php推荐算法实现
PHP 推荐算法实现
推荐算法在电商、社交网络和内容平台中广泛应用。PHP 可以通过多种方式实现推荐算法,以下是一些常见的方法和示例代码。
基于内容的推荐
基于内容的推荐通过分析用户历史行为或项目特征生成推荐。例如,根据用户浏览的商品标签推荐相似商品。
function contentBasedRecommendation($userPreferences, $items) {
$recommendations = [];
foreach ($items as $itemId => $itemTags) {
$similarity = 0;
foreach ($userPreferences as $tag => $weight) {
if (isset($itemTags[$tag])) {
$similarity += $weight * $itemTags[$tag];
}
}
if ($similarity > 0) {
$recommendations[$itemId] = $similarity;
}
}
arsort($recommendations);
return array_keys($recommendations);
}
协同过滤推荐
协同过滤分为用户协同过滤和物品协同过滤。用户协同过滤通过相似用户的行为推荐物品。
function userBasedCollaborativeFiltering($userId, $userItemMatrix, $k = 5) {
$similarUsers = [];
foreach ($userItemMatrix as $otherUserId => $items) {
if ($otherUserId == $userId) continue;
$similarity = pearsonCorrelation($userItemMatrix[$userId], $items);
$similarUsers[$otherUserId] = $similarity;
}
arsort($similarUsers);
$topSimilarUsers = array_slice($similarUsers, 0, $k, true);
$recommendations = [];
foreach ($topSimilarUsers as $similarUserId => $similarity) {
foreach ($userItemMatrix[$similarUserId] as $itemId => $rating) {
if (!isset($userItemMatrix[$userId][$itemId])) {
$recommendations[$itemId] = ($recommendations[$itemId] ?? 0) + $similarity * $rating;
}
}
}
arsort($recommendations);
return array_keys($recommendations);
}
矩阵分解推荐
矩阵分解通过降维技术提取用户和物品的隐含特征,常用于处理稀疏矩阵。
function matrixFactorization($userItemMatrix, $k = 10, $epochs = 100, $alpha = 0.01, $lambda = 0.02) {
$nUsers = count($userItemMatrix);
$nItems = count($userItemMatrix[0]);
$P = array_fill(0, $nUsers, array_fill(0, $k, rand() / getrandmax()));
$Q = array_fill(0, $nItems, array_fill(0, $k, rand() / getrandmax()));
for ($epoch = 0; $epoch < $epochs; $epoch++) {
foreach ($userItemMatrix as $userId => $items) {
foreach ($items as $itemId => $rating) {
$error = $rating - dotProduct($P[$userId], $Q[$itemId]);
for ($i = 0; $i < $k; $i++) {
$P[$userId][$i] += $alpha * (2 * $error * $Q[$itemId][$i] - $lambda * $P[$userId][$i]);
$Q[$itemId][$i] += $alpha * (2 * $error * $P[$userId][$i] - $lambda * $Q[$itemId][$i]);
}
}
}
}
return ['P' => $P, 'Q' => $Q];
}
混合推荐系统
混合推荐结合多种推荐算法以提高准确性和覆盖率。例如,结合基于内容和协同过滤的结果。
function hybridRecommendation($userId, $userPreferences, $userItemMatrix, $items) {
$contentBased = contentBasedRecommendation($userPreferences, $items);
$collaborativeBased = userBasedCollaborativeFiltering($userId, $userItemMatrix);
$recommendations = array_merge($contentBased, $collaborativeBased);
$recommendations = array_unique($recommendations);
return $recommendations;
}
辅助函数
以下是一些辅助函数的实现,用于计算相似度和点积。
function pearsonCorrelation($vector1, $vector2) {
$n = count($vector1);
$sum1 = array_sum($vector1);
$sum2 = array_sum($vector2);
$sum1Sq = array_sum(array_map(function($x) { return $x * $x; }, $vector1));
$sum2Sq = array_sum(array_map(function($x) { return $x * $x; }, $vector2));
$pSum = 0;
foreach ($vector1 as $key => $value) {
if (isset($vector2[$key])) {
$pSum += $value * $vector2[$key];
}
}
$num = $pSum - ($sum1 * $sum2 / $n);
$den = sqrt(($sum1Sq - ($sum1 * $sum1 / $n)) * ($sum2Sq - ($sum2 * $sum2 / $n)));
return $den == 0 ? 0 : $num / $den;
}
function dotProduct($vector1, $vector2) {
$product = 0;
for ($i = 0; $i < count($vector1); $i++) {
$product += $vector1[$i] * $vector2[$i];
}
return $product;
}
总结
PHP 可以通过多种方式实现推荐算法,包括基于内容的推荐、协同过滤、矩阵分解和混合推荐。选择适合业务场景的算法,结合用户数据和物品特征,能够有效提升推荐系统的效果。







